Золотой билет - Страница 22


К оглавлению

22

Кнут, конечно, понимал, что если равенство классов докажут, то все его усилия по изобретению названия пропадут даром, поскольку NP-полные задачи «переедут» в класс P. Однако такая перспектива ученого не пугала. «Мне даже хочется, чтобы эта «неприятность» случилась, – пишет он. – Более того, за решение проблемы я объявляю награду: тот, кто первый докажет, что P = NP, получит от меня настоящую живую индейку». Что ж… докажите равенство P и NP – и получите миллион долларов и индейку в придачу!

После Карпа

Работа Карпа послужила толчком к дальнейшему развитию информатики. NP-полные задачи множились, как грибы; профессора и аспиранты по всему миру брались за известные поисковые проблемы (а также находили новые) и доказывали их NP-полноту. В классическом труде 1979 года приводится более трехсот основополагающих NP-полных задач. Число их неудержимо растет; NP-полные задачи возникают не только в информатике и математике, но и в физике, биологии, экономике и во многих других областях. Поиск по Академии Google выдает более 138000 научных статей об NP-полноте за период с 1972 по 2011 год, и в одном только 2011 году на эту тему было создано около 10000 работ. Вряд ли имеет смысл приводить здесь список всех NP-полных задач, однако мне хотелось бы дать вам представление о некоторых из них.

Доминирующее множество

Существует ли в Королевстве группа из 50 человек, в которой у каждого жителя есть хотя бы один друг? NP-полная задача.

Разбиение на треугольники

Комнаты в общежитии Королевского технологического рассчитаны на трех человек. Можно ли расселить студентов таким образом, чтобы в каждой комнате жили только друзья? NP-полная задача.

Гигантские судоку

Судоку – это японская головоломка с числами. В классическом варианте используется квадратная сетка 9 × 9 (рис. 4.2).


Рис. 4.2. Классический вариант судоку


Рис. 4.3. Решение судоку из рис. 4.2


Цель игры – заполнить пустые клетки цифрами от 1 до 9 так, чтобы в каждой строке, каждом столбце и каждом жирно очерченном квадрате 3 × 3 эти цифры не повторялись.

Судоку лежит в классе NP, поскольку проверить имеющееся решение труда не составляет. Вы спросите, насколько сложно это решение найти? На самом деле все не так уж страшно: обычный среднестатистический компьютер при помощи простого перебора с возвратом решает классический вариант всего за несколько секунд.

А как обстоит дело с игрой на большом поле? Например, с сеткой 25 × 25, в которой каждая строка, каждый столбец и каждый мини-квадрат должны содержать все буквы от A до Y?

В этом случае вычисление займет уже гораздо больше времени, а с сеткой 100 × 100 вообще ни один современный компьютер не справится.


Рис. 4.4. Гигантское судоку


Поиск решения гигантского судоку – задача NP-полная. Считаете себя мастером судоку? Или знаете надежный способ решения какой-нибудь другой гигантской головоломки? Тогда в ваших руках ключ от решения задачи о выполнимости, задачи коммивояжера и тысячи других NP-полных проблем!

Есть еще много игр для одного игрока, решение которых представляет собой NP-полную задачу. Возьмем, к примеру, встроенного в Microsoft Windows «Сапера».


Рис. 4.5. «Сапер»


Число в ячейке говорит о количестве мин, расположенных в соседних с ней квадратиках – по вертикали, горизонтали и диагонали. Вы должны либо открыть ячейку, чтобы узнать это число, либо поставить на ней флажок, если думаете, что в ячейке бомба. Откроете бомбу – проиграете. Нахождение выигрышной стратегии в гигантском «Сапере» также представляет собой NP-полную задачу. На рисунке ниже показано расположение оставшихся бомб.

Другой пример – «Тетрис», в котором нужно передвигать и поворачивать фигурки так, чтобы образовывались сплошные горизонтальные ряды. Заполненный ряд тут же исчезает. Игра заканчивается, когда на экране больше не осталось свободных рядов; цель играющего – продержаться как можно дольше.

Фигурки бывают разных форм. В классическом варианте «Тетриса» вы не знаете, какая фигурка выпадет следующей. Впрочем, если бы вам даже заранее сообщили последовательность появления фигурок, выбор оптимальной стратегии все равно остался бы NP-полной задачей.


Рис. 4.6. Оставшиеся бомбы


Рис. 4.7. «Тетрис»


Кто бы мог подумать, что, научившись мастерски играть в судоку, «Тетрис» или «Сапер», можно доказать равенство P и NP и решить одну из задач тысячелетия!


Рис. 4.8. Виды фигурок в «Тетрисе»


Как насчет кубика Рубика? Наверняка это тоже NP-полная задача: ведь если даже освоение классического варианта 3 × 3 × 3 занимает столько времени, что уж говорить о больших кубах?


22